Photon-counting CT is an emerging technology with the potential to dramatically change clinical CT using new energy-resolving x-ray detectors, with...
Read More
About this webinar:
Photon-counting CT is an emerging technology with the potential to dramatically change clinical CT using new energy-resolving x-ray detectors, with mechanisms that differ substantially from those of conventional energy-integrating detectors.
Photon-counting CT detectors count the number of incoming photons and measure photon energy. It can reduce radiation exposure, reconstruct images at a higher resolution, correct beam-hardening artifacts, optimize the use of contrast agents, and create opportunities for quantitative imaging relative to current CT technology.
In this webinar, the speakers will explain the technical principles of photon-counting CT including the use of contrast media.
PP-ULT-ALL-0229
PP-ULT-SE-0002-1
1. W. Kalender, W. Seissler, E. Klotz, P. Vock
Radiology, 176 (1990), pp. 181-183
2. C.H. McCollough, F.E. Zink
Med Phys, 26 (1999), pp. 2223-2230
3. K. Klingenbeck-Regn, S. Schaller, T. Flohr, B. Ohnesorge, A.F. Kopp, U. Baum
Eur J Radiol, 31 (1999), pp. 110-124
4. S. Mori, T. Obata, N. Nakajima, N. Ichihara, M. Endo
AJNR Am J Neuroradiol, 26 (10) (2005), pp. 2536-2541
5. T.G. Flohr, C.H. McCollough, H. Bruder, M. Petersilka, K. Gruber, C. Süß, et al.
Eur Radiol, 16 (2006), pp. 256-268
6. T.E. Vanhecke, R.D. Madder, J.E. Weber, et al.
Circ Cardiovasc Imaging., 4 (5) (2011), pp. 490-497
7. S.M. Shanbhag, J.L. Schuzer, C. Steveson, S. Rollison, K.C. Bronson, M.S. Stagliano, et al.
J Comput Assist Tomogr, 43 (5) (2019), pp. 805-810
8. X. Duan, J. Wang, S. Leng, et al.
AJR Am J Roentgenol, 201 (4) (2013 Oct), pp. W626-W632
9. G.M. Lu, Y. Zhao, L.J. Zhang, U.J. Schoepf
AJR Am J Roentgenol, 199 (5 Suppl) (2012), pp. S40-S53
10. D. Marin, D.T. Boll, A. Mileto, R.C. Nelson
Radiology, 271 (2) (2014), pp. 327-342
11. E.G. Odisio, M.T. Truong, C. Duran, P.M. de Groot, M.C. Godoy
Radiol Clin North Am, 56 (4) (2018), pp. 535-548
12. M.H. Albrecht, C.N. De Cecco, U.J. Schoepf, et al.
Eur J Radiol, 105 (2018), pp. 110-118
13. D. De Santis, M. Eid, C.N. De Cecco, et al.
Radiol Clin North Am, 56 (4) (2018), pp. 521-534
14. P. Rajiah, M. Sundaram, N. Subhas
AJR Am J Roentgenol, 213 (3) (2019), pp. 493-505
15. M.J. Siegel, J.C. Ramirez-Giraldo
Radiology, 291 (2) (2019), pp. 286-297
16. Johnson TRC, Krauß B, Sedlmair M, et al. (2007). Material differentiation by dual-energy CT: initial experience. Eur Radiol 2007; 17(6):1510-7.
17. D. Zhang, X. Li, B. Liu
Med Phys, 38 (3) (2011), pp. 1178-1188
18. N. Rassouli, M. Etesami, A. Dhanantwari, P. Rajiah
Detector-based spectral CT with a novel dual-layer technology: principles and applications
Insights Imaging, 8 (6) (2017), pp. 589-598
CrossRefView Record in ScopusGoogle Scholar
19. S. Feuerlein, E. Roessl, R. Proksa, et al.
Multienergy photon-counting K-edge imaging: potential for improved luminal depiction in vascular imaging
Radiology, 249 (3) (2008), pp. 1010-1016
CrossRefView Record in ScopusGoogle Scholar
20. K. Taguchi, J.S. Iwanczyk
Vision 20/20: Single photon-counting x-ray detectors in medical imaging
Med Phys, 40 (10) (2013), Article 100901
CrossRefView Record in ScopusGoogle Scholar
21. K. Taguchi
Energy-sensitive photon-counting detector-based X-ray computed tomography
Radiol Phys Technol, 10 (1) (2017), pp. 8-22
CrossRefView Record in ScopusGoogle Scholar
22. M.J. Willemink, M. Persson, A. Pourmorteza, N.J. Pelc, D. Fleischmann
Photon-counting CT: Technical Principles and Clinical Prospects
Radiology, 289 (2) (2018), pp. 293-312
CrossRefView Record in ScopusGoogle Scholar
23. S. Leng, M. Bruesewitz, S. Tao, et al.
Photon-counting Detector CT: System Design and Clinical Applications of an Emerging Technology
Radiographics, 39 (3) (2019), pp. 729-743
CrossRefView Record in ScopusGoogle Scholar
24. S. Kappler, D. Niederlöhner, K. Stierstorfer, T. Flohr
Contrast-enhancement, image noise and dual-energy simulations for quantum-counting clinical CT
Proceedings of the SPIE Medical Imaging Conference, 7622 (2010), p. 76223H
CrossRefView Record in ScopusGoogle Scholar
25. F.A. Kopp, H. Daerr, S. Si-Mohamed, et al.
Evaluation of a pre-clinical photon-counting CT prototype for pulmonary imaging
Sci Rep, 8 (1) (2018), p. 17386
View Record in ScopusGoogle Scholar
26. Bratke G, Hickethier T, Bar-Ness D, et al. Spectral Photon-Counting Computed Tomography for Coronary Stent Imaging: Evaluation of the Potential Clinical Impact for the Delineation of In-Stent Restenosis. Invest Radiol 2019 Sep 12. doi: 10.1097/RLI.0000000000000610. [Epub ahead of print].
Google Scholar
27. I. Riederer, D. Bar-Ness, M.A. Kimm
Liquid embolics agents in spectral x-ray photon-counting computed tomography using tantalum K-edge imaging
Sci Rep, 9 (2019), p. 5268
View Record in ScopusGoogle Scholar
28. D.P. Cormode, S. Si-Mohamed, D. Bar-Ness, et al.
Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner
Sci Rep, 7 (1) (2017), p. 4784
View Record in ScopusGoogle Scholar
29. J. Dangelmaier, D. Bar-Ness, H. Daerr, et al.
Experimental feasibility of spectral photon-counting computed tomography with two contrast agents for the detection of endoleaks following endovascular aortic repair
Eur Radiol, 28 (8) (2018), pp. 3318-3325
CrossRefView Record in ScopusGoogle Scholar
30. D. Muenzel, D. Bar-Ness, E. Roessl, et al.
Spectral Photon-counting CT: Initial Experience with Dual-Contrast Agent K-Edge Colonography
Radiology, 283 (3) (2017), pp. 723-728
CrossRefView Record in ScopusGoogle Scholar
31. S. Si-Mohamed, D. Bar-Ness, M. Sigovan, et al.
Multicolour imaging with spectral photon-counting CT: a phantom study
Eur Rad Experimental, 2 (2018), p. 34
View Record in ScopusGoogle Scholar
32. S. Si-Mohamed, V. Tatard-Leitman, A. Laugerette, et al.
Spectral Photon-Counting Computed Tomography (SPCCT): in-vivo single-acquisition multi-phase liver imaging with a dual contrast agent protocol
Sci Rep, 9 (1) (2019), p. 8458
View Record in ScopusGoogle Scholar
33. I. Riederer, S. Si-Mohamed, S. Ehn, et al.
Differentiation between blood and iodine in a bovine brain – Initial experience with spectral photon-counting computed tomography (SPCCT)
PLoS ONE, 14 (2) (2019), Article e0212679
CrossRefView Record in ScopusGoogle Scholar
34. Kappler S, Hannemann T, Kraft E, et al. First results from a hybrid prototype CT scanner for exploring benefits of quantum-counting in clinical CT. Medical Imaging 2012: Physics of Medical Imaging (San Diego, CA: International Society for Optics and Photonics) p 83130X.
Google Scholar
35. Kappler S, Henning A, Krauss B, et al. Multi-energy performance of a research prototype CT scanner with small-pixel counting detector. Medical Imaging 2013: Physics of Medical Imaging (Lake Buena Vista, FL: International Society for Optics and Photonics) p. 86680O.
Google Scholar
36. Kappler S, Henning A, Kreisler B, et al. Photon-counting CT at elevated x-ray tube currents: contrast stability, image noise and multi-energy performance. Medical Imaging 2014: Physics of Medical Imaging (San Diego, CA: International Society for Optics and Photonics) p. 90331C.
Google Scholar
37. Z. Yu, S. Leng, S.M. Jorgensen, et al.
Evaluation of conventional imaging performance in a research CT system with a photon-counting detector array
Phys Med Biol, 61 (2016), pp. 1572-1595
CrossRefView Record in ScopusGoogle Scholar
38. R. Gutjahr, A.F. Halaweish, Z. Yu, et al.
Human Imaging With Photon-counting-Based Computed Tomography at Clinical Dose Levels: Contrast-to-Noise Ratio and Cadaver Studies
Invest Radiol, 51 (7) (2016), pp. 421-429
View Record in ScopusGoogle Scholar
39. A. Pourmorteza, R. Symons, V. Sandfort, et al.
Abdominal Imaging with contrast-enhanced photon-counting CT: first human experience
Radiology, 279 (1) (2016), pp. 239-245
CrossRefView Record in ScopusGoogle Scholar
40. A. Pourmorteza, R. Symons, D.S. Reich, M. Bagheri, T.E. Cork, S. Kappler, et al.
Photon-Counting CT of the Brain. In Vivo Human Results and Image-Quality Assessment
AJNR Am J Neuroradiol, 38 (12) (2017), pp. 2257-2263
View Record in ScopusGoogle Scholar
41. Z. Yu, S. Leng, S. Kappler, et al.
Noise performance of low-dose CT_ comparison between an energy integrating detector and a photon-counting detector using a whole-body research photon-counting CT scanner
J Med Imaging, 3 (4) (2016), Article 043503
View Record in ScopusGoogle Scholar
42. R. Symons, T. Cork, P. Sahbaee, et al.
Low-dose lung cancer screening with photon-counting CT: a feasibility study
Phys Med Biol, 62 (1) (2017), pp. 202-213
CrossRefView Record in ScopusGoogle Scholar
43. R. Symons, A. Pourmorteza, V. Sandfort, et al.
Feasibility of Dose-reduced Chest CT with Photon-counting Detectors: Initial Results in Humans
Radiology, 285 (3) (2017), pp. 980-989
CrossRefView Record in ScopusGoogle Scholar
44. R. Symons, V. Sandfort, M. Mallek, S. Ulzheimer, A. Pourmorteza
Coronary artery calcium scoring with photon-counting CT: first in vivo human experience
Int J Cardiovasc Imaging, 35 (4) (2019), pp. 733-739
CrossRefView Record in ScopusGoogle Scholar
45. S. Leng, K. Rajendran, H. Gong, et al.
150-μm Spatial Resolution Using Photon-Counting Detector Computed Tomography Technology: Technical Performance and First Patient Images
Invest Radiol, 53 (11) (2018), pp. 655-662
CrossRefView Record in ScopusGoogle Scholar
46. R. Symons, Y. de Bruecker, J. Roosen, et al.
Quarter-millimeter spectral coronary stent imaging with photon-counting CT: Initial experience
J Cardiovascul Comp Tomogr, 12 (2018), pp. 509-515
ArticleDownload PDFView Record in ScopusGoogle Scholar
47. J. von Spiczak, M. Mannil, B. Peters, et al.
Photon-counting computed Tomography with dedicated sharp convolution kernels – tapping the potential of a new technology for stent imaging
Invest Radiol, 53 (8) (2018), pp. 486-494
CrossRefView Record in ScopusGoogle Scholar
48. A. Pourmorteza, R. Symons, A. Henning, S. Ulzheimer, D.A. Bluemke
Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Tomography: First-in-Human Results
Invest Radiol, 53 (6) (2018), pp. 365-372
CrossRefView Record in ScopusGoogle Scholar
49. W. Zhou, J.I. Lane, M.L. Carlson, et al.
Comparison of a Photon-Counting-Detector CT with an Energy-Integrating-Detector CT for Temporal Bone Imaging: A Cadaveric Study
AJNR Am J Neuroradiol, 39 (9) (2018), pp. 1733-1738
CrossRefView Record in ScopusGoogle Scholar
50. D.J. Bartlett, W.C. Koo, B.J. Bartholmai, et al.
High-Resolution Chest Computed Tomography Imaging of the Lungs: Impact of 1024 Matrix Reconstruction and Photon-Counting Detector Computed Tomography
Invest Radiol, 54 (3) (2019), pp. 129-137
CrossRefView Record in ScopusGoogle Scholar
51. Z. Li, S. Leng, L. Yu, et al.
An effective noise reduction method for multi-energy CT images that exploit spatio-spectral features
Med Phys, 44 (5) (2017), pp. 1610-1623
CrossRefView Record in ScopusGoogle Scholar
52. A.P. Harrison, Z. Xu, A. Pourmorteza, D.A. Bluemke, D.J. Mollura
A multichannel block-matching denoising algorithm for spectral photon-counting CT images
Med Phys, 44 (6) (2017), pp. 2447-2452
CrossRefView Record in ScopusGoogle Scholar
53. Rajendran K, Tao S, Abdurakhimova D, Leng S, McCollough C. Ultra-high resolution photon-counting detector CT reconstruction using spectral prior image constrained compressed-sensing (UHR-SPICCS). Proc SPIE Int Soc Opt Eng; 2018 Mar;10573. pii: 1057318. doi: 10.1117/12.2294628.
Google Scholar
54. S1 Leng, W. Zhou, Z. Yu, et al.
Spectral performance of a whole-body research photon-counting detector CT: quantitative accuracy in derived image sets
Phys Med Biol, 62 (17) (2017), pp. 7216-7232
CrossRefView Record in ScopusGoogle Scholar
55. R. Symons, D.S. Reich, M. Bagheri, et al.
Photon-Counting Computed Tomography for Vascular Imaging of the Head and Neck: First In Vivo Human Results
Invest Radiol, 53 (3) (2018), pp. 135-142
CrossRefView Record in ScopusGoogle Scholar
56. K.L. Grant, T.G. Flohr, B. Krauss, et al.
Assessment of an Advanced Image-Based Technique to Calculate Virtual Monoenergetic Computed Tomographic Images From a Dual-Energy Examination to Improve Contrast-To-Noise Ratio in Examinations Using Iodinated Contrast Media
Invest Radiol, 49 (9) (2014), pp. 586-592
View Record in ScopusGoogle Scholar
57. Zhou W, Abdurakhimova D, Bruesewitz M, et al. Impact of photon-counting detector technology on kV selection and diagnostic workflow in CT. Proc SPIE Int Soc Opt Eng. 201 Mar;10573. pii: 105731C doi: 10.1117/12.2294952.
Google Scholar
58. R. Gutjahr, C. Polster, A. Henning, S. Kappler, S. Leng, C.H. McCollough, et al.
Dual-energy CT Kidney Stone Differentiation in Photon-counting Computed Tomography
Proc SPIE Int Soc Opt Eng, 10132 (2017)
Google Scholar
59. A. Ferrero, R. Gutjahr, A.F. Halaweish, S. Leng, C.H. McCollough
Characterization of Urinary Stone Composition by Use of Whole-body, Photon-counting Detector CT
Acad Radiol, 25 (10) (2018), pp. 1270-1276
ArticleDownload PDFView Record in ScopusGoogle Scholar
60. R.P. Marcus, J.G. Fletcher, A. Ferrero, et al.
Detection and Characterization of Renal Stones by Using Photon-Counting-based CT
Radiology, 289 (2) (2018), pp. 436-442
CrossRefView Record in ScopusGoogle Scholar
61. R. Symons, T.E. Cork, M.N. Lakshmanan, et al.
Dual-contrast agent photon-counting computed tomography of the heart: initial experience
Int J Cardiovasc Imaging, 33 (2017), pp. 1253-1261
CrossRefView Record in ScopusGoogle Scholar
62. R. Symons, B. Krauss, P. Sahbaee, et al.
Photon-counting CT for simultaneous imaging of multiple contrast agents in the abdomen: An in vivo study
Med Phys, 44 (10) (2017), pp. 5120-5127
CrossRefView Record in ScopusGoogle Scholar
63. S. Tao, K. Rajendran, C.H. McCollough, S. Leng
Material decomposition with prior knowledge aware iterative denoising (MD-PKAID)
Phys Med Biol, 63 (19) (2018), Article 195003
CrossRefView Record in ScopusGoogle Scholar
64. M. Persson, B. Huber, S. Karlsson, et al.
Energy-resolved CT imaging with a photon-counting silicon-strip detector
Phys Med Biol, 59 (2014), pp. 6709-6727
CrossRefView Record in ScopusGoogle Scholar
65. H.M. Cho, W.C. Barber, H. Ding, J.S. Iwanczyk, S. Molloi
Characteristic performance evaluation of a photon counting Si strip detector for low dose spectral breast CT imaging
Med Phys, 41 (9) (2014), Article 091903
CrossRefView Record in ScopusGoogle Scholar
66. Grönberg F, Lundberg J, Sjölin M, et al. Feasibility of unconstrained three-material decomposition: imaging an excised human heart using a prototype silicon photon-counting CT detector. Eur Radiol 2020 Jun 25. doi: 10.1007/s00330-020-07017-y. Online ahead of print.
Google Scholar
67. J. da Silva, F. Grönberg, B. Cederström, et al.
Resolution characterization of a silicon-based, photon-counting computed tomography prototype capable of patient scanning
J Med Imaging (Bellingham)., 6 (4) (2019), Article 043502
View Record in ScopusGoogle Scholar
68. Panta, RK, Butler APH, de Ruiter NJA, et al. First human imaging with MARS photon-counting CT. 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC).
Google Scholar
69. T.G. Flohr, K. Stierstorfer, C. Süß, et al.
Novel ultrahigh resolution data acquisition and image reconstruction for multi- detector row CT
Med Phys, 34 (5) (2007), pp. 1712-1723
CrossRefView Record in ScopusGoogle Scholar
70. S. Kappler, D. Niederlöhner, S. Wirth, K. Stierstorfer
A full-system simulation chain for computed tomography scanners
IEEE, Orlando, FL (2009), pp. 3433-3436, 10.1109/NSSMIC.2009.5401779
CrossRefView Record in ScopusGoogle Scholar
71. K. Taguchi, C. Polster, O. Lee, K. Stierstorfer, S. Kappler
Spatio-energetic cross talk in photon counting detectors: Detector model and correlated Poisson data generator
Med Phys, 43 (12) (2016), pp. 6386-6404
72. J. Cammin, S. Kappler, T. Weidinger, K. Taguchi
Evaluation of models of spectral distortions in photon-counting detectors for computed tomography
J Med Imaging, 3 (2) (2016), Article 023503
73. K. Stierstorfer
Modeling the frequency-dependent detective quantum efficiency of photon-counting x-ray detectors
Med Phys, 45 (2018), pp. 156-166
CrossRefView Record in ScopusGoogle Scholar
74. K. Stierstorfer, M. Hupfer, N. Köster
Modeling the DQE(f) of photon-counting detectors: impact of the pixel sensitivity profile
Phys Med Biol, 64 (2019), Article 105008
Ultravist 150, 240, 300, 370 mg I/ml injektions-/infusionsvätska, lösning (Rx V08AB05; EF). Indikationer: Endast avsett för diagnostik. Urografi. Angiografi på såväl artär- som vensida. Digital subtraktionsangiografi. Kontrastförstärkning vid datortomografi. Artrografi. Funktionskontroll av dialysshunt. Dosering: Beror på ålder, vikt, undersökningens art och den använda tekniken. Dosen måste vara så låg som möjligt till patienter som lider av uttalad njurinsufficiens, kardiovaskulär insufficens och till patienter med dåligt allmäntillstånd. Försiktighet bör iakttas hos små barn (under 1 år), som löper större risk för störningar av elektrolybalansen och hemodynamiska obalanser. Äldre: Dosjustering är inte nödvändig. Kontraindikationer: Överkänslighet mot den aktiva substansen eller mot något hjälpämne. Det finns inga absoluta kontraindikationer vid användandet av Ultravist. Varningar och försiktighet: Mediciner och utrustning för akutbehandling av kontrastmedelsreaktioner skall alltid hållas i beredskap. Hos patienter med dåligt allmäntillstånd bör undersökningsbehovet övervägas extra noggrant. Försiktighet rekommenderas till patienter med lungemfysem eller mångårig diabetes mellitus. Hydrering: Adekvat hydreringsstatus måste garanteras i samband med intravaskulär administrering av Ultravist. Detta berör särskilt utsatta patienter med exempelvis multipelt myelom, diabetes mellitus, polyuri, oliguri, hyperurikemi samt nyfödda, spädbarn, barn och äldre patienter. Biverkningar: Överkänslighetsreaktioner. Risken för överkänslighetsreaktioner är högre vid tidigare reaktion mot kontrastmedel och tidigare bronkialastma eller andra allergiska åkommor. Allergiliknande reaktioner kan uppträda. De vanligast observerade biverkningarna är huvudvärk, illamående och vasodilatation. De allvarligaste biverkningarna är anafylaktoid chock, andningsuppehåll, bronkospasm, larynxödem, farynxödem, astma, arytmi, hjärtstillestånd och pulmonellt ödem. De flesta av dessa reaktioner uppträder inom 30 minuter efter administrering. Fördröjda reaktioner (efter timmar till dagar) kan uppträda. Störningar i tyreoideafunktionen kan förekomma. Hos neonatala, särskilt för tidigt födda spädbarn, som har blivit exponerade för Ultravist, antingen via modern under graviditeten eller under den neonatala perioden, bör tyroidfunktionen monitoreras. Akut njurskada (AKI), i form av övergående nedsättning av njurfunktionen kan uppträda efter intravaskulär administrering av Ultravist. Interaktioner: Biguanider (metformin): Hos patienter med akut njursvikt eller allvarlig kronisk njursjukdom kan eliminationen av biguanid reduceras, vilket leder till ackumulering och utveckling av mjölksyreacidos. Hälso- och sjukvårdspersonal uppmanas att rapportera misstänkt biverkning till Läkemedelsverket. Radioaktiva isotoper: I samband med diagnos och behandling av sjukdomar i tyreoidea med tyreotropiskt radioaktiva isotoper kan upptaget av de radioaktiva isotoperna hämmas i flera veckor efter administrering med Ultravist. Farmakokinetik: Iopromid distribueras mycket snabbt extracellulärt efter intravaskulär administrering. Plasmaproteinbindningsgraden är ca 1%. Djurstudier tyder på att iopromid inte passerar en intakt blod-hjärnbarriär, men att en mindre mängd kan passera placenta. Metabolism: Inga metaboliter har påvisats. Vid rekommenderade doser elimineras iopromid nästan uteslutande genom glomerulär filtration. Innehavare av godkännande för försäljning: Bayer AB, Box 606, SE-169 26 Solna. För ytterligare information, pris samt förskrivning, vänligen läs produktresumé på www.fass.se Datum för översyn av produktresumén: 2021-09-02.