Interactive protocol optimization webinar on CT Coronary Angiography

Interactive protocol optimization webinar on CT Coronary Angiography


Rapid developments have extended the capabilities of cardiac computed tomography (CT), particularly coronary CT angiography (CTA). However, further...

Read More

Heart CT

Durations: 42:43

About this webinar:

Rapid developments have extended the capabilities of cardiac computed tomography (CT), particularly coronary CT angiography (CTA). However, further parameters are also essential to maximize this essential technology. This webinar discusses the practical application of optimized scanning parameters in coronary CTA, to achieve consistent, low dose, diagnostic imaging. In this interactive webinar, experts from the Maastricht University Medical Centre (MUMC+) will share their experience in coronary CTA protocol optimization and discuss interesting cases. The hosts have been extensively published in high quality journals on this topic including; Investigative Radiology, Euro J Radiol and the Br J Radiol. These scientific principles will underpin the clinical cases that are discussed. During the event, the audience will be encouraged to participate through live polls to share their experiences and challenges, followed by discussion with the panel of experts.


Accordion header

    Dr. Bibi Martens

    Dr. Bibi Martens

    Dr. Bibi Martens is working at Maastricht University Medical Centre, MUMC+ in The Netherlands.

    Dr. Casper Mihl

    Dr. Casper Mihl

    Dr. Casper Mihl is working at Maastricht University Medical Centre, MUMC+ in The Netherlands.

    1. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology 2010; 256: 32-61. 

    2. Otero HJ.Steigner ML.Rybicki FJ. The ""post-64"" era of coronary CT angiography: understanding new technology from physical principles. Radiologic clinics of North America 2009; 47: 79-90.

    3. Achenbach S.Marwan M.Schepis al. High-pitch spiral acquisition: a new scan mode for coronary CT angiography. Journal of cardiovascular computed tomography 2009; 3: 117-121. 

    4. Bae KT. Optimization of contrast enhancement in thoracic MDCT. Radiologic clinics of North America 2010; 48: 9-29. 

    5. Budoff MJ.Dowe D.Jollis al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. Journal of the American College of Cardiology 2008; 52: 1724-1732. 

    6. Meijboom WB.Meijs MF.Schuijf al. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. Journal of the American College of Cardiology 2008; 52: 2‍1‍3‍5‍-‍2‍1‍4‍4‍. 

    7. Isogai T.Jinzaki M.Tanami al. Body weight-tailored contrast material injection protocol for 64-detector row computed tomography coronary angiography. Japanese journal of radiology 2011; 29: 33-38. 

    8. Cademartiri F.Mollet NR.Lemos al. Higher intracoronary attenuation improves diagnostic accuracy in MDCT coronary angiography. American journal of roentgenology 2006; 187: W430-W433. 

    9. Cademartiri F.Maffei E.Palumbo al. Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. European radiology 2008; 18: 576-583. 

    10. Johnson PT.Pannu HK.Fishman EK. IV contrast infusion for coronary artery CT angiography: literature review and results of a nationwide survey. American journal of roentgenology 2009; 192: W214-W221. 

    11. Awai K.Hiraishi K.Hori S. Effect of contrast material injection duration and rate on aortic peak time and peak enhancement at dynamic CT involving injection protocol with dose tailored to patient weight. Radiology 2004; 230: 142-150. 

    12. Muhlenbruch G.Behrendt FF.Eddahabi al. Which iodine concentration in chest CT? A prospective study in 300 patients. European radiology 2008; 18: 2‍8‍2‍6‍-‍2‍8‍3‍2‍. 

    13. Behrendt FF.Bruners P.Keil al. Impact of different vein catheter sizes for mechanical power injection in CT: in vitro evaluation with use of a circulation phantom. Cardiovascular and interventional radiology 2009; 32: 25-31. 

    14. Knollmann F.Schimpf K.Felix R. Iodine delivery rate of different concentrations of iodine-containing contrast agents with rapid injection. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2004; 176: 880-884. 

    15. Cademartiri F.Mollet NR.van der Lugt al. Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 2005; 236: 661-665. 

    16. Cademartiri Monye C.Pugliese al. High iodine concentration contrast material for noninvasive multislice computed tomography coronary angiography: iopromide 370 versus iomeprol 400. Investigative radiology 2006; 41: 349-353. 

    17. Brunette J.Mongrain R.Laurier al. 3D flow study in a mildly stenotic coronary artery phantom using a whole volume PIV method. Medical engineering & physics 2008; 30: 1193-1200. 

    18. Nance Jr JW.Henzler T.Meyer al. Optimization of contrast material delivery for dual-energy computed tomography pulmonary angiography in patients with suspected pulmonary embolism. Investigative Radiology 2012; 47: 78-84. 

    19. Rist C.Nikolaou K.Kirchin al. Contrast bolus optimization for cardiac 16-slice computed tomography: comparison of contrast medium formulations containing 300 and 400 milligrams of iodine per milliliter. Investigative radiology 2006; 41: 460-467. 

    20. Behrendt FF.Pietsch H.Jost al. Identification of the iodine concentration that yields the highest intravascular enhancement in MDCT angiography. American journal of roentgenology 2013; 200: 1151-1156. 

    21. Moher D.Liberati A.Tetzlaff al. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Journal of clinical epidemiology 2009; 62: 1006-1012. 

    22. Whiting PF.Rutjes AW.Westwood al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Annals of internal medicine 2011; 155: 529-536. 

    23. Malayeri AA.Zimmerman SL.Lake al. 128-Slice dual source coronary CTA: defining optimal arterial enhancement levels. Emergency radiology 2014; 21: 499-504. 

    24. Becker CR.Hong C.Knez al. Optimal contrast application for cardiac 4-detector-row computed tomography. Investigative radiology 2003; 38: 690-694. 

    25. Cademartiri F.Luccichenti G.Marano al. Comparison of monophasic vs biphasic administration of contrast material in non-invasive coronary angiography using a 16-row multislice computed tomography. La Radiologia Medica 2004; 107: 489-496. 

    26. Cademartiri F.Luccichenti G.Marano al. Use of saline chaser in the intravenous administration of contrast material in non-invasive coronary angiography with 16-row multislice Computed Tomography. La Radiologia Medica 2004; 107: 497-505. 

    27. Cao L.Du X.Li al. Multiphase contrast-saline mixture injection with dual-flow in 64-row MDCT coronary CTA. European journal of radiology 2009; 69: 496-499. 

    28. Fuchs TA.Stehli J.Bull al. Coronary computed tomography angiography with model-based iterative reconstruction using a radiation exposure similar to chest X-ray examination. European heart journal 2014; 35: 1131-1136. 

    29. Hein PA.Romano VC.Lembcke al. Initial experience with a chest pain protocol using 320-slice volume MDCT. European radiology 2009; 19: 1148-1155. 

    30. Christensen JD.Meyer LT.Hurwitz al. Effects of iopamidol-370 versus iodixanol-320 on coronary contrast, branch depiction, and heart rate variability in dual-source coronary MDCT angiography. American journal of roentgenology 2011; 197: W445-W451.

    31. Kalafut JF.Kemper CA.Suryani al. A personalized and optimal approach for dosing contrast material at coronary computed tomography angiography. Conference proceedings: annual international conference of the IEEE engineering in medicine and biology society IEEE engineering in medicine and biology society conference. 2009: 3‍5‍2‍1‍-‍3‍5‍2‍4‍. 

    32. Kidoh M.Nakaura T.Nakamura al. Low-contrast-dose protocol in cardiac CT: 20% contrast dose reduction using 100 kVp and high-tube-current-time setting in 256-slice CT. Acta radiologica 2014; 55: 545-553. 

    33. Kidoh M.Nakaura T.Nakamura al. Contrast material and radiation dose reduction strategy for triple-rule-out cardiac CT angiography: feasibility study of non-ECG-gated low kVp scan of the whole chest following coronary CT angiography. Acta radiologica 2014; 55: 1186-1196. 

    34. Komatsu S.Kamata T.Imai al. Coronary computed tomography angiography using ultra-low-dose contrast media: radiation dose and image quality. The international journal of cardiovascular imaging 2013; 29: 1335-1340. 

    35. Li S.Liu J.Peng al. Contrast volume reduction adapted to body mass index for 320-slice coronary computed tomography angiography: results from four-year clinical routine at a single center. International journal of cardiology 2014; 172: e140-e142. 

    36. Litmanovich D.Zamboni GA.Hauser al. ECG-gated chest CT angiography with 64-MDCT and tri-phasic iv contrast administration regimen in patients with acute non-specific chest pain. European radiology 2008; 18: 308-317. 

    37. Mitsumori LM.Wang E.May al. Triphasic contrast bolus for whole-chest ECG-gated 64-MDCT of patients with nonspecific chest pain: evaluation of arterial enhancement and streak artifact. American journal of roentgenology 2010; 194: W263-W271. 

    38. Rienmuller R.Brekke O.Kampenes al. Dimeric versus monomeric nonionic contrast agents in visualization of coronary arteries. European journal of radiology 2001; 38: 173-178. 

    39. Rutten A.Meijs Vos al. Biphasic contrast medium injection in cardiac CT: moderate versus high concentration contrast material at identical iodine flux and iodine dose. European radiology 2010; 20: 1917-1925. 

    40. Stenzel F.Rief M.Zimmermann al. Contrast agent bolus tracking with a fixed threshold or a manual fast start for coronary CT angiography. European radiology 2014; 24: 1229-1238. 

    41. Tatsugami F.Husmann L.Herzog al. Evaluation of a body mass index-adapted protocol for low-dose 64-MDCT coronary angiography with prospective ECG triggering. American journal of roentgenology 2009; 192: 635-638. 

    42. Wuest W.Anders K.Scharf al. Which concentration to choose in dual flow cardiac CT?: dual flow cardiac CT. European journal of radiology 2012; 81: e461-e466. 

    43. Yuki H.Utsunomiya D.Funama al. Value of knowledge-based iterative model reconstruction in low-kV 256-slice coronary CT angiography. Journal of cardiovascular computed tomography 2014; 8: 115-123. 

    44. Cademartiri F.Mollet N.van der Lugt al. Non-invasive 16-row multislice CT coronary angiography: usefulness of saline chaser. European radiology 2004; 14: 178-183. 

    45. Cademartiri F.Luccichenti G.Gualerzi al. Intravenous contrast material administration in multislice computed tomography coronary angiography. Acta biomedica 2005; 76: 86-94. 

    46. Utsunomiya D.Awai K.Sakamoto al. Cardiac 16-MDCT for anatomic and functional analysis: assessment of a biphasic contrast injection protocol. American journal of roentgenology 2006; 187: 638-644. 

    47. Yamamuro M.Tadamura E.Kanao al. Coronary angiography by 64-detector row computed tomography using low dose of contrast material with saline chaser: influence of total injection volume on vessel attenuation. Journal of computer assisted tomography 2007; 31: 272-280. 

    48. Husmann L.Valenta I.Gaemperli al. Feasibility of low-dose coronary CT angiography: first experience with prospective ECG-gating. European heart journal 2008; 29: 191-197. 

    49. Kerl JM.Ravenel JG.Nguyen al. Right heart: split-bolus injection of diluted contrast medium for visualization at coronary CT angiography. Radiology 2008; 247: 356-364. 

    50. Kim DJ.Kim TH.Kim al. Saline flush effect for enhancement of aorta and coronary arteries at multidetector CT coronary angiography. Radiology 2008; 246: 110-115. 

    51. Nakaura T.Awai K.Yauaga al. Contrast injection protocols for coronary computed tomography angiography using a 64-detector scanner: comparison between patient weight-adjusted- and fixed iodine-dose protocols. Investigative radiology 2008; 43: 512-519. 

    52. Tsai IC.Lee T.Tsai al. Contrast enhancement in cardiac MDCT: comparison of iodixanol 320 versus iohexol 350. American journal of roentgenology 2008; 190: W47-W53.  

    53. Wuest W.Zunker C.Anders al. Functional cardiac CT imaging: a new contrast application strategy for a better visualization of the cardiac chambers. European journal of radiology 2008; 68: 3‍9‍2‍-‍3‍9‍7‍. 

    54. Halpern EJ.Levin DC.Zhang al. Comparison of image quality and arterial enhancement with a dedicated coronary CTA protocol versus a triple rule-out coronary CTA protocol. Academic radiology 2009; 16: 1039-1048. 

    55. Seifarth H.Puesken M.Kalafut al. Introduction of an individually optimized protocol for the injection of contrast medium for coronary CT angiography. European radiology 2009; 19: 2‍3‍7‍3‍-‍2‍3‍8‍2‍. 

    56. Kim EY.Yeh DW.Choe al. Image quality and attenuation values of multidetector CT coronary angiography using high iodine-concentration contrast material: a comparison of the use of iopromide 370 and iomeprol 400. Acta radiologica 2010; 51: 982-989. 

    57. Lu JG.Lv B.Chen al. What is the best contrast injection protocol for 64-row multi-detector cardiac computed tomography?. European journal of radiology 2010; 75: 159-165. 

    58. Ozbulbul NI.Yurdakul M.Tola M. Comparison of a low-osmolar contrast medium, iopamidol, and an iso-osmolar contrast medium, iodixanol, in MDCT coronary angiography. Coronary artery disease 2010; 21: 414-419. 

    59. Pazhenkottil AP.Husmann L.Buechel al. Validation of a new contrast material protocol adapted to body surface area for optimized low-dose CT coronary angiography with prospective ECG-triggering. The international journal of cardiovascular imaging 2010; 26: 591-597. 

    60. Tatsugami F.Matsuki M.Inada al. Feasibility of low-volume injections of contrast material with a body weight-adapted iodine-dose protocol in 320-detector row coronary CT angiography. Academic radiology 2010; 17: 207-211. 

    61. Tatsugami F.Kanamoto T.Nakai al. Reduction of the total injection volume of contrast material with a short injection duration in 64-detector row CT coronary angiography. The British journal of radiology 2010; 83: 35-39. 

    62. Becker CR.Vanzulli A.Fink al. Multicenter comparison of high concentration contrast agent iomeprol-400 with iso-osmolar iodixanol-320: contrast enhancement and heart rate variation in coronary dual-source computed tomographic angiography. Investigative radiology 2011; 46: 457-464. 

    63. Kumamaru KK.Steigner ML.Soga al. Coronary enhancement for prospective ECG-gated single R-R axial 320-MDCT angiography: comparison of 60- and 80-mL iopamidol 370 injection. American journal of roentgenology 2011; 197: 844-850. 

    64. Nakaura T.Awai K.Yanaga al. Low-dose contrast protocol using the test bolus technique for 64-detector computed tomography coronary angiography. Japanese journal of radiology 2011; 29: 457-465. 

    65. Zhu X.Chen W.Li al. Contrast material injection protocol with the flow rate adjusted to the heart rate for dual source CT coronary angiography. The international journal of cardiovascular imaging 2012; 28: 1557-1565. 

    66. Zhu X.Zhu Y.Xu al. Dual-source CT coronary angiography involving injection protocol with iodine load tailored to patient body weight and body mass index: estimation of optimal contrast material dose. Acta Radiol 2013; 54: 149-155.

    67. Zhu X.Zhu Y.Xu al. The influence of body mass index and gender on coronary arterial attenuation with fixed iodine load per body weight at dual-source CT coronary angiography. Acta radiologica 2012; 53: 637-642. 

    68. Kidoh M.Nakaura T.Awai al. Compact-bolus dynamic CT protocol with a test bolus technique in 64-MDCT coronary angiography: comparison of fixed injection rate and duration protocol. Japanese journal of radiology 2013; 31: 115-122. 

    69. Kidoh M.Nakaura T.Nakamura al. Novel contrast-injection protocol for coronary computed tomographic angiography: contrast-injection protocol customized according to the patient's time-attenuation response. Heart and vessels 2014; 29: 149-155. 

    70. Liu J.Gao J.Wu al. Optimizing contrast medium injection protocol individually with body weight for high-pitch prospective ECG-triggering coronary CT angiography. The international journal of cardiovascular imaging 2013; 29: 1115-1120. 

    71. Yang WJ.Chen KM.Liu al. Contrast media volume optimization in high-pitch dual-source CT coronary angiography: feasibility study. The international journal of cardiovascular imaging 2013; 29: 245-252. 

    72. Tomizawa N.Suzuki F.Akahane al. Effect of saline flush on enhancement of proximal and distal segments using 320-row coronary CT angiography. European journal of radiology 2013; 82: 1255-1259. 

    73. Zheng M.Liu Y.Wei al. Low concentration contrast medium for dual-source computed tomography coronary angiography by a combination of iterative reconstruction and low-tube-voltage technique: feasibility study. European journal of radiology 2014; 83: e92-e99. 

    74. Lembcke A.Schwenke C.Hein al. High-pitch dual-source CT coronary angiography with low volumes of contrast medium. European radiology 2014; 24: 120-127. 

    75. Kawaguchi N.Kurata A.Kido al. Optimization of coronary attenuation in coronary computed tomography angiography using diluted contrast material. Circulation journal: official journal of the Japanese circulation society 2014; 78: 662-670. 

    76. Mihl C.Wildberger JE.Jurencak al. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom. Investigative radiology 2013; 48: 813-818. 

    77. Mihl C.Kok M.Wildberger al. Coronary CT angiography using low concentrated contrast media injected with high flow rates: feasible in clinical practice. European journal of radiology 2015; 84: 2‍1‍5‍5‍-‍2‍1‍6‍0‍. 

    78. Kok M.Mihl C.Hendriks al. Patient comfort during contrast media injection in coronary computed tomographic angiography using varying contrast media concentrations and flow rates: results from the EICAR trial. Investigative radiology 2016; DOI: 10.1097/RLI.0000000000000284. 

    79. Mihl C.Kok M.Wildberger al. Computed tomography angiography with high flow rates: an in vitro and in vivo feasibility study. Investigative radiology 2015; 50: 464-469. 

    80. Schoellnast H.Deutschmann HA.Berghold al. MDCT angiography of the pulmonary arteries: influence of body weight, body mass index, and scan length on arterial enhancement at different iodine flow rates. American journal of roentgenology 2006; 187: 1074-1078. 

    81. Bae KT.Heiken JP. Scan and contrast administration principles of MDCT. European radiology 2005; 15: E46-E59. 

    82. Bae KT.Seeck BA.Hildebolt al. Contrast enhancement in cardiovascular MDCT: effect of body weight, height, body surface area, body mass index, and obesity. American journal of roentgenology 2008; 190: 777-784. 

    83. Platt JF.Reige KA.Ellis JH. Aortic enhancement during abdominal CT angiography: correlation with test injections, flow rates, and patient demographics. American journal of roentgenology 1999; 172: 53-56. 

    84. Husmann L.Leschka S.Boehm al. Influence of body mass index on coronary artery opacification in 64-slice CT angiography. RoFo: Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin 2006; 178: 1007-1013. 

    85. Mihl C.Kok M.Altintas al. Evaluation of individually body weight adapted contrast media injection in coronary CT-angiography. European journal of radiology 2016; 85: 830-836. 

    86. Mahesh M. MDCT physics: the basics: technology, image quality and radiation dose. 1st ed. Philadelphia: Lippincott Williams and Wilkins; 2009. 

    87. Brooks RA. A quantitative theory of the Hounsfield unit and its application to dual energy scanning. Journal of computer assisted tomography 1977; 1: 487-493.

    Ultravist® 150, 240, 300, 370 mg I/ml injektions-/infusionsvätska, lösning (Rx V08AB05; EF). Indikationer: Endast avsett för diagnostik. Urografi. Angiografi på såväl artär- som vensida. Digital subtraktionsangiografi. Kontrastförstärkning vid datortomografi. Artrografi. Funktionskontroll av dialysshunt. Dosering: Beror på ålder, vikt, undersökningens art och den använda tekniken. Dosen måste vara så låg som möjligt till patienter som lider av uttalad njurinsufficiens, kardiovaskulär insufficens och till patienter med dåligt allmäntillstånd. Försiktighet bör iakttas hos små barn (under 1 år), som löper större risk för störningar av elektrolybalansen och hemodynamiska obalanser. Äldre: Dosjustering är inte nödvändig. Kontraindikationer: Överkänslighet mot den aktiva substansen eller mot något hjälpämne. Det finns inga absoluta kontraindikationer vid användandet av Ultravist®. Varningar: Mediciner och utrustning för akutbehandling av kontrastmedelsreaktioner skall alltid hållas i beredskap. Hos patienter med dåligt allmäntillstånd bör undersökningsbehovet övervägas extra noggrant. Försiktighet rekommenderas till patienter med lungemfysem eller mångårig diabetes mellitus. Hydrering: Adekvat hydreringsstatus måste garanteras i samband med intravaskulär administrering av Ultravist®. Detta berör särskilt utsatta patienter med exempelvis multipelt myelom, diabetes mellitus, polyuri, oliguri, hyperurikemi samt nyfödda, spädbarn, barn och äldre patienter. Biverkningar: Överkänslighetsreaktioner. Risken för överkänslighetsreaktioner är högre vid tidigare reaktion mot kontrastmedel och tidigare bronkialastma eller andra allergiska åkommor. Allergiliknande reaktioner kan uppträda. De vanligast observerade biverkningarna är huvudvärk, illamående och vasodilatation. De allvarligaste biverkningarna är anafylaktoid chock, andningsuppehåll, bronkospasm, larynxödem, farynxödem, astma, arytmi, hjärtstillestånd och pulmonellt ödem. De flesta av dessa reaktioner uppträder inom 30 minuter efter administrering. Fördröjda reaktioner (efter timmar till dagar) kan uppträda. Störningar i tyreoideafunktionen kan förekomma. Hos neonatala, särskilt för tidigt födda spädbarn, som har blivit exponerade för Ultravist®, antingen via modern under graviditeten eller under den neonatala perioden, bör tyroidfunktionen monitoreras. Akut njurskada (AKI), i form av övergående nedsättning av njurfunktionen kan uppträda efter intravaskulär administrering av Ultravist®. Interaktioner: Biguanider (metformin): Hos patienter med akut njursvikt eller allvarlig kronisk njursjukdom kan eliminationen av biguanid reduceras, vilket leder till ackumulering och utveckling av mjölksyreacidos. Hälso- och sjukvårdspersonal uppmanas att rapportera misstänkt biverkning till Läkemedelsverket. Radioaktiva isotoper: I samband med diagnos och behandling av sjukdomar i tyreoidea med tyreotropiskt radioaktiva isotoper kan upptaget av de radioaktiva isotoperna hämmas i flera veckor efter administrering med Ultravist®. Farmakokinetik: Iopromid distribueras mycket snabbt extracellulärt efter intravaskulär administrering. Plasmaproteinbindningsgraden är ca 1 %. Djurstudier tyder på att iopromid inte passerar en intakt blod-hjärnbarriär, men att en mindre mängd kan passera placenta. Metabolism: Inga metaboliter har påvisats. Vid rekommenderade doser elimineras iopromid nästan uteslutande genom glomerulär filtration. Innehavare av godkännande för försäljning: Bayer AB, Box 606, SE-169 26 Solna. Tlf. +4‍6‍ 8‍-‍5‍8‍0‍ 2‍2‍3‍ 0‍0‍. För ytterligare information, pris samt förskrivning, vänligen läs produktresumé på Datum för översyn av produktresumén: 2021-09-02.


    Videos filtered by:

    No video present for this selection.